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Abstract

This work focuses on describing damping enhancement for two-dimensional structures using piezoelectrics in

combination with a passive electrical network. An analytical model is developed to quantify such damping. For optimal

placement of the piezoelectric elements on a host structure an energy-based approach is applied and extended for two-

dimensional structures. Furthermore, the effect of using different configurations of the passive electrical network is

discussed. Finally, experiments are conducted to verify the developed models.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Damping of mechanical vibrations is important because it can reduce the risk of fatigue in materials
and reduce structural born sound. Much effort has been expended in attempting to minimize unwanted
vibrations. The use of viscoelastic materials with high loss factors is one of the most common damping
approaches. One of the drawbacks in using such materials is that they add significant mass to the structure to
which they are attached. This is becoming more and more limiting as nowadays light weight
structural design is becoming state-of-the-art. Alternatively, piezoelectrics can be used as the primary
damping mechanism. They have the unique ability to strain when an electrical voltage is applied and
produce an electrical voltage when strained. In short, they have the ability to transform electrical
energy to mechanical energy and vice versa. Used in the semi-passive approach the electrical energy is
dissipated as heat in a resistor. This approach is regarded as simple, low-cost, light-weight, and easy-to-
implement.

First activities in using piezoelectric materials for damping vibrations have been reported in a patent by
Forward [1] in 1979. In 1980, Edwards et al. [2] started considerations of theoretical models to describe such a
damping phenomenon. However, a first validated model, which has been useful for describing piezo-induced
damping, has been published in 1991 by Hagood and Flotow [3]. They did their investigations using a
vibrating beam. According to their ‘shunted piezo technique’, damping enhancement was achieved through
application of piezoelectrics and a passive electrical network (PEN). They attributed the increase in damping
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Nomenclature

A area of electrode
C capacitance
d piezoelectric coefficient
d piezoelectric coefficient matrix
D electrical displacement
E Young’s modulus
E0 storage modulus
E00 loss modulus
f eigenfrequency
I current
I identity matrix
j imaginary unit, j2 ¼ �1
k electromechanical coupling coefficient
kp planar coupling coefficient
li ith dimension of a wafer
L matrix of dimensions for a wafer
R resistance
s mechanical compliance
s mechanical compliance matrix
t time
U voltage
UE stored electrical energy
Ueff effective strain energy
Us maximum stored potential energy
U tot total potential energy
w deflection in x3-direction
W specific damping work
x eigenvector

xi ith spatial coordinate
X matrix of eigenvectors
Y admittance
Y diagonal admittance matrix
Z impedance
Z diagonal impedance matrix
Z̄ generalized impedance, Z̄ ¼ CsZspjo
Z loss factor
g matrix of loss factors
� mechanical strain
~� electrical permittivity
l eigenvalue
n Poisson’s ratio
o circular frequency
r dimensionless circular frequency, r ¼

RCEo
s stress
x structural damping
L inductance
E electrical field
ð��Þ quantity in system of principle axes
ð�Þp material property of piezoelectric wafer

ð�Þ
PEN quantity of passive electrical network
ð�Þ

sp quantity in semi-passive case
ð�Þ

T transposition of a matrix
ð�Þ

� quantity for constant mechanical strain
ð�Þ

s quantity for constant mechanical stress
ð�Þ

E quantity for constant electrical field
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basically to two features: (1) the type of PEN they used and (2) the electromechanical coupling coefficient of
the piezoelectric material. For their investigations they used resistors and a combination of resistor and
inductor (RL). They observed an increase in damping over a broad frequency regime by using a resistive PEN.
The damping could be significantly increased by using a RL-combination. However, the frequency range was
limited, and additionally, a rather large inductor of 142.4H was required for optimal damping. Publications of
others [4–7] conclude with similar results concerning the high inductances for optimal damping treatment.
From a practical point of view this high inductance limits the application of a RL-combination significantly.
Park et al. [8] worked on an improved PEN composed of a capacitor C in parallel with the RL-combination.
As a consequence of the capacitor, the optimal inductance is reduced by 1=ð1þ aÞ, where a is the ratio of the
capacitance C to the capacitance of the piezoelectric element used.

A stack actuator utilizing the shunted piezo technique is modeled by Law et al. [9]. Moreover they stress
that Hagood’s [3] model is limited to frequencies well below the first eigenfrequency of the piezoelectric
element.

Based on the results in Ref. [3] Davis et al. [10] formulated the ‘effective strain energy’ for uniaxial stress for
a slender beam-like piezoelectric element. The ratio of effective strain energy to total maximum strain energy,
which is stored in a vibrating structure, allows the prediction of increased damping for each single mode of the
beam. This concept can be applied for arbitrary positions of the piezoelectric element with respect to the base
structure. Conducting experiments with different positions of piezoelectric elements on a beam verified
this method.
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A good survey of historical and recent research activities on damping enhancement by using piezoelectric
materials is given in Refs. [4,5]. There are also some publications about the shunted piezo technique applied to
plate-like structures [11–13]. However, these investigations present no analytical expression for the damping
enhancement due to the chosen damping treatment.

This work primarily extends the existing models which are all restricted to one-dimensional structures
to the two-dimensional case. Plate-like structures are widely used in practice, and they are also most
interesting from a sound emission point of view. Based on matrix operations and analytical formulations, for
the first time, an analytical model for two-dimensional structures is presented. Compared to models proposed
in literature so far this model can be used to precisely predict the increase in damping of vibrating plates.
Material properties of the piezoelectric elements and the properties of the passive electrical network are
identified as most important parameters. Furthermore, the effective strain energy approach is derived for two-
dimensional structures. So far it is only existing for simple one-dimensional beams. It is also shown that the
one-dimensional case is incorporated in the more general two-dimensional formulation. Such a two-
dimensional formulation is crucial for optimizing the layout of the piezoelectric elements which are applied on
the structure under investigation. Finally, the models are verified by a series of experiments conducted on a
vibrating plate.
2. A model of piezo-resistive damping

Typically, the piezoelectric effect is described by using the mechanical stress r and the electrical field E
vectors as independent state variables. Thus the set of linear equations is of the ðs;EÞ-type, as outlined by
Ikeda [14]. The mechanical strain e and electrical displacement D are given by

�

D

� �
¼

sE dT

d ~�s

" #
s

E

� �
. (1)

In this representation sE denotes the mechanical compliance matrix for constant electrical field, d is the
piezoelectric coefficient matrix, and ~es is the electrical permittivity matrix for constant stress. The index T
denotes the transposition of a matrix. An electrical field and electrical displacement give rise to an electrical
voltage and current, respectively. These quantities can be calculated as

U ¼

Z
ðE1 dx1 þ E2 dx2 þ E3 dx3Þ ð2Þ

I i ¼
d

dt
Qi ¼

Z
Ai

d

dt
~Di dai. ð3Þ

Both quantities are dependent on time and the spatial coordinates, where the time dependency can be
expressed as ~Di ¼ Die

jot. This yields the representation

U ¼ LE; I ¼ AjoD, (4)

where the electric field and electric displacement are assumed constant, and j2 ¼ �1. The matrix L ¼ diagf‘ig

characterizes the dimensions of a piezoelectric wafer, as shown in Fig. 1(a). Using Eqs. (1) and (4)
�1
�1

�2

�2

YPEN

x1

x2

x3 .

.

~ I Y� YPEN

piezoelectric 
material

electrode

Fig. 1. Models of semi-passive piezoelectric elements: (a) semi-passive piezo-wafer and (b) electrical model [9].
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a formulation relating strain and current to stress and voltage is derived,

�

I

" #
¼

sE dTL�1

joAd joA~�sL�1

" #
s

U

" #
ð5Þ

¼
sE dTL�1

joAd Ys

" #
s

U

" #
. ð6Þ

For simplification of Eq. (6) the relationship for a plate capacitor

Cs
i ¼ Ai~�

s
ii=‘i (7)

is used which is valid for constant stress. Furthermore, the admittance Ys for a piezoelectric wafer under
constant mechanical stress is given as Ys ¼ joCs. Applying a PEN to the piezo-wafer results in energy
dissipation and, thus, in an enhancement of damping. Fig. 1 shows a PEN in parallel with a piezo-wafer as
well as the resulting equivalent circuit diagram, known as the Thevenin-equivalent circuit diagram. This
equivalent circuit diagram is only valid for a piezo-wafer which is working well below its first eigenfrequency
(quasi-static case). It has been introduced by Law et al. [9]. It is possible to apply three independent PENs,
each acting in one spatial direction within the piezo-wafer. Consequently, the matrix of admittance for all
PENs shows merely diagonal entries, YPEN ¼ diagfYPEN

i g. For admittances working in parallel, the total
admittance is given by the sum of all single admittances [15]. Therefore, a shunted piezoelectric element can be
characterized as

�

I

� �
¼

sE dTL�1

joAd Ysp

" #
s

U

� �
with Ysp ¼ Ys þ YPEN, (8)

where the index sp denotes the shunted case. The electrical voltage of a shunted piezoelectric element is
given by

U ¼ ZspðI� joAdsÞ. (9)

The impedance matrix Zsp is also diagonal and results from an inversion of the admittance, Zsp ¼ ðYspÞ
�1. The

voltage U in Eq. (8) can be eliminated by using Eq. (9). This yields a linear relation for the strain in a shunted
piezo-wafer

� ¼ ðsE � jo dTL�1ZspAdÞsþ dTL�1ZspI. (10)

For the following considerations the applied current is set to zero. This means the piezoelectric element is not
actively driven. The compliance matrix of a purely shunted piezo-wafer can be written as

ssp ¼ sE � jo dTL�1ZspAd. (11)

Taking into account the definition of a plate capacitor, Eq. (7), yields

ssp ¼ sE � jo dTCs~�s
�1

Zspd

¼ sE � dTZ̄
sp
~�s
�1

d with Z̄
sp
¼ CsZspjo ð12Þ

for the compliance of a shunted piezo-wafer, where the generalized impedance Z̄
sp
is introduced. The matrices

Z̄
sp

and ~es
�1

are diagonal matrices. Thus, the following relationship holds:

dTZ̄
sp
~�s
�1

d ¼ dT diagfZ̄
sp
=~�sg d ¼

X3
i¼1

ðZ̄
sp
ii =~�

s
iiÞ d

T
i di, (13)
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where di characterizes the ith row of the matrix d. The subscripts ii denote the diagonal element of the
corresponding matrix. Substituting Eq. (13) into Eq. (12), one obtains

ssp ¼ sE �
X3
i¼1

ðZ̄
sp
ii =~�

s
iiÞ d

T
i di ¼ sE �

X3
i¼1

ðZ̄
sp
ii =~�

s
iiÞMi. (14)

The elements of the resulting matrix Mi are proportional with respect to the piezo-electric coefficients of the
piezo-electric material and can be computed as

M1 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 d2
15 0

0 0 0 0 0 0

2
666666664

3
777777775
; M2 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 d2
15 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
,

M3 ¼

d2
31 d2

31 d31d33 0 0 0

d2
31 d2

31 d31d33 0 0 0

d31d33 d31d33 d2
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666666664

3
7777777775
. (15)

In cases where the electrodes of the piezo-wafer are applied within the x2x3- or x1x3-plane, the compliance is
only dependent on d15, as can be seen for matrix M1 and M2. However, if the electrodes are applied within the
x1x2-plane, the resulting compliance is dependent on d31 as well as d33. This configuration is of special interest
for the case of piezo-wafers which are used in the 31-mode, i.e., wafers which are polarized in the x3-direction
and stressed in the x1-direction (see Fig. 1(a)).
2.1. Passive electrical network

The introduced PEN can be realized in three different ways: (1) Using a capacitance C, which
results in a capacitive PEN (2) by the use of an inductance L, which is termed an inductive
PEN or (3) alternatively, by a resistance R, the so-called resistive PEN. All three possibilities are illustrated
in Fig. 2.
~ I C� C

piezo

~ I C� L

piezo

~ I C� R

piezo

Fig. 2. Different techniques to realize a shunted piezo: (a) capacitive, (b) inductive and (c) resistive.



ARTICLE IN PRESS
O.M. Fein / Journal of Sound and Vibration 310 (2008) 865–880870
The application of a capacitive PEN yields the generalized impedance:

Z̄
sp
¼

Cs

C þ Cs , (16)

whereby the total admittance is expressed by means of Eq. (8) with YPEN ¼ Cjo and Ys ¼ Csjo. This
configuration only changes the compliance of the shunted piezo-wafer. No damping increase is observed for
this configuration [3,4].

For an inductor in parallel with the piezo-wafer, the admittance of the piezoelectric element and the
inductor can be written as Ys ¼ Csjo and YPEN ¼ 1=Ljo, respectively. Finally, for the generalized
impedance one finds

Z̄
sp
¼

CsLo2

CsLo2 � 1
. (17)

A suitable choice of the inductance results in a reduction in vibration, as has been shown by Hagood
and von Flotow [3] for a slender beam-like piezoelectric element. However, a significant increase in
damping is only given in a very narrow frequency range. For other frequencies or for a detuned
inductor the vibration reduction is negligible [3,5,7]. Additionally, the very high values for the
inductance of approximately 100H for frequencies below 1 kHz are very restrictive from a practical point
of view [3–7].

The technical realization of a resistive PEN is relatively simple, because a resistor is very small in
weight and size. Within the resistor some part of the vibration energy is dissipated as heat. This
results in a very good vibration reduction [3,4,16–18]. In Ref. [19] a method is presented which
describes how the resistance can be automatically adapted over a broad frequency regime. A phase
shift of �p=2 for the voltage has to be taken into account when R is in parallel with Cs.
Furthermore, the admittance of the piezo and the PEN are given by Ys ¼ Csjo and YPEN ¼ 1=R,
respectively, which yields

Z̄
sp
¼

RCsjo
RCsjoþ 1

(18)

for the generalized impedance. The capacitance Cs of the piezoelectric element in Eqs. (16), (17), and (18) is
only valid for constant stress conditions within a piezo-wafer. However, for a piezo-wafer applied to a
structure, the mechanical strain within this element is constant. This effects the capacitance of the piezoelectric
element. According to Ikeda [14] this change in capacitance is found to be

C� ¼ Csð1� k2
Þ, (19)

where the electromechanical coupling coefficient k is introduced. The parameter k is dependent on how the
stresses are applied [14]. The generalized impedance for a resistively shunted piezo-wafer under constant
mechanical strain can be written as

Z̄
sp
¼

j

jrþ 1� k2
with r ¼ RC�o, (20)

where r denotes the dimensionless circular frequency.
2.2. Damping effect of a two-dimensional piezo-wafer

For damping treatment of thin-walled vibrating structures, the 31-mode of a shunted piezo is of particular
interest. The piezoelectric wafer is therefore bonded on a vibrating structure. The piezoelectric element is
polarized in the x3-direction, and a resistive PEN is connected to the x1x2-electrodes. Within the piezo-wafer a
plane-stress field with s3 ¼ s4 ¼ s5 ¼ 0 is effective. Based on Eq. (14) and assuming transversal-isotropic
properties for the piezoelectric material yields the compliance for a resistively shunted piezo-wafer with
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Poisson’s ratio n

ssp ¼

sE11 �nsE11 0

�nsE11 sE11 0

0 0 2ð1þ nÞsE11

2
64

3
75� Z̄

sp
33

~�
sp

33

d2
31 d2

31 0

d2
31 d2

31 0

0 0 0

2
64

3
75. (21)

According to Ikeda [14] it is necessary to introduce the electrical permittivity ~�
sp

33, due to plane-stress
conditions. It has to be added that ~�s33 is only valid for the uniaxial stress condition. Additionally, it is taken
into account that Z̄

sp
for a resistive PEN obeys Eq. (20) which finally yields

ssp ¼

sE11 �nsE11 0

�nsE11 sE11 0

0 0 2ð1þ nÞsE11

2
64

3
75�mrðrþ ð1� k2

pÞjÞ

ð1� k2
pÞ

2
þ r2

1 1 0

1 1 0

0 0 0

2
64

3
75, (22)

where the constant

m ¼ d2
31ð1� k2

pÞ=~�
s
33 (23)

is introduced. The constant ð1� k2
pÞ in Eq. (23) is used to scale the electrical permittivity ~�s, as required by the

plane-stress condition [14,20]. For an isotropic piezoelectric material under plane-stress conditions, the planar
coupling coefficient kp is given by Ikeda [14]

kp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d2

31

~�s33s11ð1� nÞ

s
. (24)
2.2.1. Damping under plane-stress conditions

It can be shown, that the complex matrix ssp in Eq. (22) is normal, AA� ¼ A�A, where A� is the
conjugate of A. Hence, there exists a complete set of orthogonal eigenvectors, and the matrix can be
diagonalized [21].

The characteristic polynomial of ssp is of third order. The resulting roots are the eigenvalues of ssp,

l1 ¼
2rmþ sE11ðn� 1Þðrþ jðk2

p � 1ÞÞ

r2 þ ðk2
p � 1Þ2

ð�rþ jðk2
p � 1ÞÞ, ð25Þ

l2 ¼ ð1þ nÞsE11, ð26Þ

l3 ¼ 2ð1þ nÞsE11. ð27Þ

In the case of l1, which is complex in nature, the rank of ðssp � l1IÞ is found to be two. The corresponding
eigenvector is given as

xT1 ¼ 1=
ffiffiffi
2
p
ð1; 1; 0ÞT. (28)

It is normalized such that its Euclidean norm is unity. For the other two eigenvalues l2 and l3, the linearly
independent and normalized eigenvectors are computed to be

xT2 ¼ 1=
ffiffiffi
2
p
ð�1; 1; 0ÞT, ð29Þ

xT3 ¼ ð0; 0; 1Þ
T. ð30Þ

The three eigenvectors can be arranged into the matrix of eigenvectors X ¼ ½x1;x2;x3� such that

X�1sspX ¼ �ssp (31)

where �ssp is a diagonal matrix whose entries correspond to the eigenvalues. The operation ð��Þ denotes
transformation to the principal axes.
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Following investigations done by Hagood [3] for the one-dimensional loading case of a shunted piezo, the
complex Young’s modulus is introduced. It is defined in the frequency domain as

EðoÞ ¼ E0ðoÞ þ jE00ðoÞ, (32)

where the real and imaginary parts are referred to as the storage and loss modulus, respectively. Introducing
the loss factor Z, the complex modulus can be written as

EðoÞ ¼ E0ðoÞ½1þ jZðoÞ�, ð33Þ

ZðoÞ ¼
E 00ðoÞ
E0ðoÞ

¼
ImðEðoÞÞ
ReðEðoÞÞ

. ð34Þ

According to the relationship E ¼ s�1 the stiffness matrix �E
sp

for a shunted piezo-wafer is given by

�E
sp
¼

1=l1 0 0

0 1=l2 0

0 0 1=l3

2
64

3
75. (35)

After splitting the coefficients in Eq. (35) into their real and imaginary parts and applying Eq. (34) the loss
factors result

�Z1 ¼
2rmðk2

p � 1Þ

2r2mþ sE11ðn� 1Þ½r2 þ ðk2
p � 1Þ2�

,

�Z2 ¼ �Z3 ¼ 0. ð36Þ

Finally, the loss factors, which are expressed in terms of the principal axes have to be re-transformed
according to

g ¼ X �gX�1. (37)

This results in the matrix of loss factors

g ¼
rmðk2

p � 1Þ

2r2mþ sE11ðn� 1Þ½r2 þ ðk2
p � 1Þ2�

1 1 0

1 1 0

0 0 0

2
64

3
75. (38)

Taking into account the definition of the parameter m, Eq. (23), and the planar coupling coefficient kp,
Eq. (24), a scalar loss factor may be defined as

Z ¼
rk2

pðk
2
p � 1Þ2

2ðr2k2
pðk

2
p � 1Þ þ r2 þ ðk2

p � 1Þ2Þ
. (39)
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Fig. 3. Piezo-resistive damping for two-dimensional loading: (a) loss factor Z (for kp ¼ 0:58) vs. r and (b) maximum loss factor Zmax vs.

planar coupling coefficient kp.
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Fig. 3(a) illustrates the relationship between loss factor Z and dimensionless frequency r for a resistively
shunted piezo-wafer with a typical coupling coefficient kp ¼ 0:58 [22]. It clearly shows a maximum loss factor
Zmax which can be calculated as

Zmax ¼
1

4
k2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkp � 1Þ2ðkp þ 1Þ2

k4
p � k2

p þ 1

vuut , ð40Þ

at rZ�max ¼
ðkp þ 1Þð1� kpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k4
p � k2

p þ 1
q ¼ RCEo. ð41Þ

According to Eq. (41), the maximum loss factor can be shifted to any frequency by adjusting the PEN’s
resistance R. This is based on the fact, that the capacitance of the piezo-wafer is constant as long as it is driven
below its first mechanical eigenfrequency [14,17]. Eq. (40) clearly indicates that the maximum loss factor is
only dependent on kp. The maximum loss factor Zmax is plotted as a function of the planar coupling coefficient
kp in Fig. 3. Typical values for kp range from 0.04 for polyvinylidene–fluoride–films (PVDF) [23] to 0.62 for
lead–zirconate–titanate (PZT) [22]. Such a comparison shows, that it is advantageous to use PZT for piezo-
resistive damping in order to reach high loss factors.
3. Piezo-resistive damping for plates

To reduce vibrations of a structure, viscoelastic elements can be applied to it. The loss factor of one such
element is characterized as [24]

Zi ¼
W si

2pU si

. (42)

In this representation, Zi is proportional to the ratio of the specific damping work W si
to a reference energy.

For a linear viscoelastic material this reference energy equals the maximum stored potential energy U si
of the

ith damping element. If several such elements are attached to a structure, the resulting loss factor for the entire
structure (plate and viscoelastic elements) is given as

Z ¼
P

W si

2pU tot
¼

P
Zi U si

U tot
. (43)

The loss factor of such a layered structure is proportional to the ratio of dissipated energy to total potential
energy of the layered structure. The specific damping work W si

due to one viscoelastic element is given by
means of Eq. (42). Thus, the total loss factor can be expressed as shown in Eq. (43).

The considerations mentioned above are only valid when viscoelasticity is an inherent property of the
material. However, for a piezoelectric element the viscoelastic property results from the interaction of
the piezoelectric effect with a connected resistive PEN. The energy dissipated in the PEN is proportional to the
electrical energy stored within the piezoelectric material. It can be shown, that the stored electrical energy is
proportional to the strain energy. For that reason the term effective strain energy can be found in the literature
[4,10]. The calculation of this energy is shown in the following section. The resulting loss factor for the ith
shunted piezo-wafer can be expressed in terms of dissipated energy and the effective strain energy U eff i

, using a
relation similar to Eq. (42),

Zi ¼W si
=ð2pU eff i

Þ . (44)

For N shunted piezo-wafers attached on a structure, the total loss factor for the layered structure is given as

Z ¼
PN

i¼1Zi U eff i

U tot
, (45)

where the denominator denotes the total maximum potential energy of the layered structure.
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Fig. 4. Plate-like structure with attached piezo-wafer.
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3.1. Modified strain energy for a two-dimensional piezo-wafer

The effective strain energy is based on considerations of the electrical energy resulting from the piezoelectric
effect. Electrical energy is stored within the piezoelectric element, where the electrical field is effective. The
specific electrical energy is defined as [25]

dUE

dV
¼

1

2

dQ3

dA3
E3. (46)

In this equation dQ3=dA3 and E3 denote the electrical displacement and electrical field in the x3-direction,
respectively. The electrical displacement as a result of applied stresses is found using Eq. (1) to be

dQ3

dA3
¼ D3 ¼ d31ðs1 þ s2Þ þ d33s3. (47)

Consider now a transversely vibrating plate-like structure with bonded piezo-wafers on it, as depicted in
Fig. 4. The distance from the neutral axis to the plate’s surface is characterized by e. This results in a plane-
stress field with s3 ¼ 0 and the classical plate theory holds

s1 ¼ �
Epx3

1� np
ðw;11 þ npw;22Þ, ð48Þ

s2 ¼ �
Epx3

1� np
ðw;22 þ npw;11Þ. ð49Þ

In this representation w denotes the deflection in the x3-direction and ð�Þ;11 and ð�Þ;22 denote the second spatial
derivative with respect to the x1- and x2-direction. Taking into account Eqs. (47)–(49) yields

dUE

dV
¼

1

2~�33
D2

3

¼
d2
31

2~�33

E2
p x2

3ð1þ npÞ
2

ð1� npÞ
2
ðw;11 þ w;22Þ

2

¼ k2
p x2

3

Epð1þ npÞ
2

4ð1� npÞ
ðw;11 þ w;22Þ

2, ð50Þ

for the specific electrical energy where the definition of the planar coupling coefficient, Eq. (24), is used.
Finally, integration yields

UE ¼ k2
p

Epð1þ npÞ
2

12ð1� npÞ
½x3

3�
eþhp
e

ZZ
A

ðw2
;11 þ 2w;11w;22 þ w2

;22Þdx2 dx1, (51)

for the stored electrical energy within a rectangular piezo-wafer. It has to be emphasized that this formulation
is based on the assumption that the electric flux lines all point in the same direction. However, this is only true
when the strain distribution within the wafer is strictly negative or positive. Consider now the case where the
piezo-wafer is attached symmetrically to a nodal line. This results in negative strain in one part of the wafer
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Fig. 5. Electric field within a piezo-wafer: (a) physical situation and (b) model.
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and positive strain in the other, as depicted in Fig. 5(a). The net generated electrical charge and therefore
stored electrical energy are as a consequence reduced to zero. This is a direct consequence of the piezoelectric
effect, which is polar in nature. Applying Eq. (51) in such a case results, however, in a non-zero energy, which
can not be explained physically. For this reason, in a thought experiment, an electrical insulating layer is
inserted into the piezo-wafer in such a way that it is perpendicular to the electrodes. As a consequence, two
electrical fields will be generated, as seen in Fig. 5(b). These fields have the same magnitude, but the phase is
shifted by 180�. The total stored energy is now the sum of both energies UE1 and UE2 : According to Eq. (46)
this energy is given as

UE ¼

Z
V1

1

2

dQ3

dA3
E3 dV þ

Z
V2

1

2

dQ3

dA3
ð�E3ÞdV ¼ 0, (52)

where the polar nature of the piezoelectric effect is incorporated. Obviously, the direction of the electrical
field is a result of the sign of the strain. This effect is lost in Eq. (51), due to squaring of the curvature
terms. However, Eq. (51) can be modified such, that the quadratic terms are replaced by the product of the
curvature and the absolute value of the curvature. This results in the effective strain energy for a two-
dimensional piezo-wafer

U eff ¼ k2
p

Epð1þ npÞ
2

12ð1� npÞ
½x3

3�
eþhp
e

ZZ
A

w;11jw;11j þ 2w;11w;22 þ w;22jw;22jdx2 dx1

����
����, (53)

where the absolute value operation for the integral assures a positive energy. This formulation allows the
calculation of the stored electrical energy independent of the strain polarity within the piezo-wafer.

Using a slender piezoelectric element results in a uniaxial stress field within the element, where only s1a0.
This gives rise to the effective strain energy for a slender piezo element as derived in Ref. [10]

Ueff ¼
1

2

d2
31

~�33s11
Ep

x3
3

3

� �eþhp

e

ZZ
A

w;11ðx1Þjw;11ðx1Þjdx1 dx2

����
����. (54)

4. Experimental verification

As a test structure for verification a rectangular shaped aluminium plate measuring ð505mm� 500mmÞ is
used. For damping enhancement two different kinds of piezoelectric materials can be used: polyvinylidene-
fluoride (PVDF) or lead–zirconate–titanate (PZT). PVDF is a very flexible material which can be shaped
almost arbitrarily. However, its planar coupling coefficient and Young’s modulus are comparatively low.
A PZT-element on the other hand is rather brittle. However, its kp is about 16 times higher, resulting in
a loss factor which is 170 times higher. Additionally, it has to be pointed out that the loss factor according to
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Table 1

Coordinates of applied PZT-elements [m]

PZT PZT PZT PZT PZT PZT PZT PZT

pair 1 pair 2 pair 3 pair 4 pair 5 pair 6 pair 7 pair 8

x1 0.100 0.100 0.100 0.100 0.375 0.375 0.375 0.375

x2 0.343 0.313 0.168 0.138 0.343 0.313 0.168 0.138

sig.-gen.

VXI- 
system
A / Damplier

force cell

accelerometer

PEN

PZT-element

PC

charge- 
amplier II

charge- 
amplier I

test plate

shaker

frame

Fig. 6. Setup used to conduct the verification experiments.

Table 2

Eigenfrequencies f i of plate without and with PZT-elements: experimentally determined (EMA) and numerically calculated (FEM)

Mode

2/1 2/2 1/3 3/1 3/2 4/1 4/2

f i (Hz), plate

w/o PZT (EMA) 161 235 273 288 365 458 550

f i (Hz), plate

w/ PZT (EMA) 150 208 309 283 338 456 530

(FEM) 145 206 295 277 335 464 535
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Eq. (45) is proportional to the effective strain energy. This is a function of the Young’s modulus, which is also
larger for PZT. For this reason PZT-elements are chosen for damping enhancement of the plate. These
elements are commercially available with a length of 20–70mm, a width of 5–25mm and a thickness of
0.1–1mm. For bending wavelengths between 190 and 320mm in the frequency band of interest, elements
measuring ð70mm� 25mm� 1mmÞ are chosen to be bonded onto the plate.

For optimal placement of the PZT-elements the following steps have to be considered: (1) identification of
the eigenfrequencies and modeshapes within the frequency range of interest; (2) choosing positions for the
PZT-elements which are at or close to the maximum of curvature for the modeshape of interest; (3) calculation
of the effective strain energy according to Eq. (53) and the resulting loss factor, according to Eq. (45).

For the experimental verification, a total of 16 PZT-elements are bonded on the plate (eight on each side).
The center positions are summarized in Table 1, where ðx1;x2Þ ¼ ð0; 0Þ is located in one corner of the plate.

The experimental setup is depicted in Fig. 6. As shown, the plate is mounted on a frame structure in such a
way that fixed-fixed boundary conditions are obtained. For such boundary conditions the eigenfrequencies
and modeshapes for a plate can be calculated analytically, as outlined in Ref. [24]. The plate is excited using a
shaker which is driven by a signal generator. In order to identify the plate’s modal parameters, acceleration
sensors are fixed on the plate, and a force gauge is mounted on the shaker. The PEN is realized by the use of
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commercially available resistors. The PEN is tuned in such a way, that the frequency for the maximum loss
factor, Eq. (41), coincides with the eigenfrequency of the 3=2-mode. According to this 3=2 designation,
there are 3 antinodes in the x1-direction and 2 antinodes in the x2-direction. One resistor is connected
to every PZT-element to obtain a proper shunt mechanism. Measuring the eigenfrequencies of the plate
before and after PZT-elements have been bonded indicates a significant shift of all eigenfrequencies,
as can be seen in Table 2. This is due to the added stiffness and inertia caused by the PZT elements. A finite
element model of the composite plate is therefore required to accurately predict the strain energy and
loss factor.

4.1. Finite-element model of the test plate

For the discretization of the structure shell elements having four nodes per element are used. These elements
are isoparametric. Pre-studies showed that a 47� 48 grid of elements was fine enough to predict the plate’s
dynamic response accurately up to 600Hz. The bonding-layer with a thickness between 80 and 100mm was not
modeled, since its influence is considered to be negligible within the frequency range of interest. The PZT-
elements are also modeled using shell elements. Calculation of the resulting loss factor is carried out in three
steps: (1) The modal parameters of the plate with PZT-elements are computed using the FE-model (Fig. 7).
The resulting eigenfrequencies are compared in Table 2 with the experimentally obtained ones. (2) The
resulting displacement field from the modal simulation is assigned as a boundary condition in the FE-model.
A static FE simulation yields the stresses s and stains � in the plate and the PZT-elements as well as the total
strain energy. Simulations are carried out using the software MARC/Mentatr [26]. (3) The resulting nodal
values for stress and strain are fed into a FORTRAN-routine, which computes the effective strain energy,
according to Eq. (53).

4.2. Comparison of damping enhancement: model and experiment

A direct measurement of the damping enhancement is not possible. Instead the frequency response function
for short circuited and shunted PZT-elements is determined. The short circuit case (R ¼ 0O) yields the
inherent damping of the structure, because according to Eq. (39), the PEN yields no damping enhancement.
Maximal damping in the frequency range of interest is obtained by shunting each PZT-element with
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Table 3

Resistance values R used to investigate the effect of damping enhancement

Resistance R (kO) 0.012 0.12 0.8 2 4.7 8.2 10 15

Increase of Z (%) 0.01 0.07 0.12 0.23 0.52 0.69 0.78 0.84

Resistance R (kO) 17 20 25 49 110 1000 – –

Increase of Z (%) 0.82 0.80 0.75 0.56 0.42 0.24 – –
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Fig. 10. Dependence of loss factor Z on the resistance of the PEN: model-based (—) and experimentally determined (	).
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R ¼ 15 kO. For a linear system the enhancement in structural damping is given as

Dx ¼ xjR¼15 kO � xjR¼0. (55)

The experimentally determined damping enhancement is depicted in Fig. 8 and is compared to the numerically
calculated increase in loss factor for each structural mode. For this comparison the relationship between loss
factor Zi and structural damping coefficient xi for each mode i,

Zi � 2xi, (56)

in the proximity of a structural resonance is used [27]. The experimentally determined and calculated increase
in damping are in very good accordance for all modes.
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Additionally, the damping effect is illustrated in the time domain. For this comparison measured
accelerances of the open-loop and shunted plate are plotted. Due to the high modal density of the plate under
investigation, only some modes are displayed. Fig. 9(a) shows the measured accelerance for mode 3=2, where
the obtained accelerances for mode 4=2 and 2=4 are plotted in Fig. 9(b).
4.3. Effect on damping enhancement by the PEN

Finally, the dependency of the loss factor on the dimensionless frequency r ¼ RCEo is investigated. The
resistance R is variable, as listed in Table 3, whereas the parameters CE;o are kept constant. In this
experiment all PZT-elements are connected to a PEN. The experimentally determined increase in loss factor is
listed in Table 3. The increase in loss factor is computed according to equation (39) and is graphically
illustrated in Fig. 10 as a line. Maximal damping for the 3=2-mode is expected for R ¼ 15 kO, which is verified
by means of this experiment. The damping characteristic for different resistances of the PEN can be described
very good by the chosen model of piezo-resistive damping. Merely selecting a resistance much higher than the
optimum results in some deviation.
5. Conclusions

Within this paper a model of semi-passive damping enhancement for vibrating two-dimensional
structures has been proposed. This damping treatment consists of piezoelectrics in combination with a
passive electrical network which dissipates part of the mechanical energy. From a practical point of
view the resistive PEN is preferred, since it is easy to realize, inexpensive, and the damping increase
for vibrating structures can be very significant. Using basic concepts a new, more general description
of this damping measure has been developed. It was illustrated that the models known in literature
for one-dimensional structures can be easily extracted out of the more general two-dimensional model. It has
been shown that the choice of a proper piezoelectric material—in terms of the coupling coefficient and
Young’s modulus—and resistance of the PEN is of utmost importance in order to achieve a high efficiency
using the proposed damping measure. Furthermore, it has been demonstrated that the loss factor is a
nonlinear function of the planar coupling coefficient. Consequently, the existence of a critical coupling
coefficient has been proven. Exceeding this critical coupling coefficient does not result in any further increase
of loss factor.

For optimal placement of the piezoelectric elements onto the vibrating structure, a general model of the
effective strain energy was invented. Compared to already existing approaches in literature this model can also
be applied for two-dimensional structures. The optimal placement of piezoceramics which achieves the highest
damping, is determined by maximizing the ratio of the effective strain energy to the total strain energy. For
this computation, the mode shapes of the structure must be known. Care has to be taken in using analytical
formulations of the mode shapes, since the PZT wafers stiffen the structure considerably. A finite-element
model provides a more accurate prediction of the strain energy.

Experiments conducted on a plate-like structure verified the models for this type of damping enhancement.
Using eight pairs of piezoceramic wafers increased the loss factor of the entire structure by 0.9% for specific
structural modes. Finally, it has to be noted that these results were achieved with only a marginal increase in
total structural mass, and, the additional amount of damping is almost insensitive to temperature changes
within a wide temperature regime.
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